skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heilbrun, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reyer, C (Ed.)
    Migrating mudbanks are characteristic features of the vast Amazon-Guianas coastline along Northeastern South America. As illustrated by sites in French Guiana, consolidating mudfats that periodically transition to mangrove forest are permeated by extensive crustacean burrow systems, sometimes in isolation but more often in close association with morpho-sedimentary structures such as tidal pools and channels. Burrow structures are critical to mangrove growth. In this study, we evaluated the ways in which burrows act as complex conduits that plumb deposits for solute exchange with overlying water. We sampled burrows during low tide when irrigation is inhibited and burrow water rapidly becomes anoxic. The products of diagenetic reactions, for example: NH4+, N2, and Si(OH)4, build up with time, revealing sedimentary reaction rates and fluxes. When oxygenated, burrow walls are zones of intense coupled redox reactions such as nitrification-denitrifcation. Build-up often is lower in burrows connected directly to tidal pools where photosynthetic activity consumes remineralized nutrients, and burrows can remain periodically irrigated at low tide. During food, burrows, particularly those that connect tidal pools laterally to channels, can be rapidly flushed and oxygenated as channel water rises and then spreads across flats. Burrow flushing produces enhanced concentrations of nutrients within the leading edge of the flood as seawater moves progressively towards and into adjacent mangroves. Estimates of burrow volumes obtained from drone surveys together with burrow solute production rates allow upscaling of burrow-sourced metabolite fluxes; however, these are extremely variable due to variable burrow geometries, connections between burrows, pools, and channels, and burrow water residence times (oxygenation). The flushing of burrows during food results in a rectification of sediment-water fluxes shoreward and enhances the delivery of nutrients from the flats into adjacent mangroves and pools, presumably stimulating colonization and forest growth. 
    more » « less